争夺AI核心算力市场,国产GPU进化得如何?
发布时间:2023-03-17 14:28:17 所属栏目:产品 来源:
导读:GPT-4的发布以及全面植入微软Office全家桶,正在全球掀起新一轮人工智能(AI)风暴。
与CPU相比,GPU的逻辑运算单元较少,单个运算单元(ALU)处理能力更弱,但能够实现多个ALU并行计算。同样运行3000次的简单运算
与CPU相比,GPU的逻辑运算单元较少,单个运算单元(ALU)处理能力更弱,但能够实现多个ALU并行计算。同样运行3000次的简单运算
|
GPT-4的发布以及全面植入微软Office全家桶,正在全球掀起新一轮人工智能(AI)风暴。 与CPU相比,GPU的逻辑运算单元较少,单个运算单元(ALU)处理能力更弱,但能够实现多个ALU并行计算。同样运行3000次的简单运算,CPU由于串行计算,需要3000个时钟周期,而配有3000个ALU的GPU运行只需要1个时钟周期。 作为计算机的图形处理以及并行计算内核,GPU最基本的功能是图形显示和分担CPU的计算量,主要可以分为图形图像渲染计算 GPU和运算协作处理器 GPGPU(通用计算图形处理器),只要后者去掉或减弱GPU的图形运算的显示能力,将其余部分全部加速投入通用模式计算,实现同步处理人工智能、专业计算等加速运算的应用。 应用于人工智能场景的服务器通常搭载GPU、FPGA、ASIC等加速芯片,加速芯片和CPU结合之后能够支撑高吞吐量的运算需求,为机器人图形自然语言处理视觉智能处理、自然语言处理语音交互等场景提供算力支持。GPU在架构设计上擅长进行大量数据运算,被广泛应用于AI场景中。 英伟达靠游戏业务发家,近年来在数据中心AI、汽车、元宇宙领域持续发力。2007年,英伟达首次推出通用并行计算架构CUDA(Compute Unified Device Architecture,统一计算设备架构),使GPU成为通用并行数据处理加速器,即GPGPU。CUDA 支持 Windows、Linux、MacOS 三种主流操作系统,支持CUDA C语言和OpenCL及CUDA Fortran语言。 这为英伟达拿下GPU过半市场份额奠定了基础——CUDA生态为英伟达GPU打造了深厚的护城河。此后,英伟达通用计算架构持续升级迭代,2010年发布Fermi架构,2012年发布Kepler架构,GPU在通用计算中逐渐成为主角。 AI的实现包括训练和推理两个环节,前者是指通过大量标记过的数据训练出一个复杂的神经网络模型,使其能够适应特定的功能;后者是指利用训练好的模型,使用新数据推理出各种结论。 一方面,性能先进性体现在高精度浮点计算能力。训练需要密集的计算得到模型,没有训练,就不可能会有推理。而训练需要更高的精度,一般来说需要float型,如FP32,32位的浮点型来处理数据。 另一方面,生态也是GPGPU发展需要解决的问题。英伟达早在CUDA问世之初就开始生态建设,AMD和Intel也推出了自研生态ROCm和one API,但CUDA凭借先发优势早已站稳脚跟。为解决应用问题,AMD和Intel通过工具将CUDA代码转换成自己的编程模型,从而实现针对 CUDA 环境的代码编译。 “国内GPU芯片的研制虽然可以满足目前大多数图形应用需求,但在科学计算、人工智能及新型的图形渲染技术方面仍然和国外领先水平存在不小差距。”上述负责人表示。 由于IP研发难度大、开发周期长,目前中国GPU开发者大多使用国外厂家提供的IP,导致核心电路专利无法控制,后续更新无法进行。此外,国内GPU底层技术空白点较多,产品前端稳定性不理想,目前又很难在主线中高端电子产品上得到普及化应用,还需多年沉淀才能具有一定替代性。 “作为一个有着数十年发展历程且相当成熟的细分行业,很多基础问题已经有了定式和最优解,并且形成了可供授权的众多专利IP,绕开这些已有IP,既不现实也不划算。”上述负责人表示,所以,相对于“芯片里用谁的IP”这种问题,我们真正需要关注的是这些企业怎样更有效地利用现有商业化IP,快速完成产品迭代和团队磨合。“需要指出的是,外购IP并不意味着无法自主可控,但对GPU企业的能力要求很高。” (编辑:汽车网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
推荐文章
站长推荐
