后摩尔时代计算能力提升的解决方法
发布时间:2023-03-27 11:06:31 所属栏目:外闻 来源:
导读:中国科大构建了当时国际上量子比特数目最多的62比特超导量子计算原型机“祖冲之号”,并实现了可编程的二维量子行走。在此基础上,中国科大进一步实现了66比特的“祖冲之二号”。“祖冲之二
中国科大构建了当时国际上量子比特数目最多的62比特超导量子计算原型机“祖冲之号”,并实现了可编程的二维量子行走。在此基础上,中国科大进一步实现了66比特的“祖冲之二号”。“祖冲之二号”具有量子随机线路抽样的快速求解的编程能力,并且实现了量子随机线路的任意量子算法的快速求解。即使是根据最新的经典算法,“祖冲之二号”仍然比最快的超级计算机快10万倍,计算复杂度比谷歌“悬铃木”高6个数量级。 IBM发布433量子比特超导量子处理器“Osprey(鱼鹰)”。根据其宣称的数据,Osprey处理器在比特数目和退相关时间上超过了中国科大团队和谷歌团队,但相关数据均为自行宣称,并未经过同行评议或第三方测试。同时,受限于简单的比特结构,Osprey处理器并不适合当前的量子计算优越性方案和表面纠错方案。根据IBM自己发布的路线图规划,其将在2026年进行“量子计算优越性”演示。 超冷原子、离子、硅基量子点这些物理体系同时具备多维扩展和容错能力,也是当前国际上量子计算领域一个很受关注的领域。 我国近年来在超冷原子量子模拟方向取得的一系列重要成果,使得我国达到了和国际上顶尖团队并驾齐驱的水平。 我国在离子体系的量子计算研究起步较晚,目前整体上处于追赶状态,国内的优势研究单位包括清华大学、中国科大和国防科大等,在量子计算中积累了很多关键的技术,比如离子阱的制备、离子相干时间、高精度量子逻辑门、多比特量子纠缠等都是研究的重要内容。 此外,由于拓扑量子计算在容错能力上的优越性,利用拓扑体系实现通用量子计算机是国际上面向长远的重要研究目标。目前国内外均在为实现单个拓扑量子比特这一“0到1”的突破而努力。 实现“量子计算优越性”的阶段目标是量子计算研究的第一个里程碑,它验证了量子计算机可以超越经典计算机的可行性,但量子计算机距离解决有价值的实际问题,还有很长的路要走。未来5至10年,量子计算的发展将集中在两个方面: 一、继续提升量子计算性能。为了实现容错量子计算,核心要素是高精度地扩展量子计算系统规模。为实现这一目标,量子比特的数量和质量都极其重要,需要实验的每个环节(量子态的制备、操控和测量)都要保持高精度、低噪声,并且随着量子比特数目的增加,噪声和串扰等因素带来的错误也随之增加,这种研究对量子系统的设计,加工和控制都带来了很大的挑战,仍然需要科学和工程领域的联合努力。 二、探索量子计算应用。预计未来5年,量子计算有望突破上千比特,虽然暂时还无法实现容错的通用量子计算,但科学家们希望探索在带噪声的量子计算(NISQ)阶段,如何将量子计算应用于机器学习、量子化学等领域,形成近期应用。 (编辑:汽车网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
推荐文章
站长推荐