加入收藏 | 设为首页 | 会员中心 | 我要投稿 汽车网 (https://www.0577qiche.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 外闻 > 正文

Google DeepMind推出AlphaDev

发布时间:2023-06-09 13:15:43 所属栏目:外闻 来源:
导读:数字社会对计算和能源的需求正在不断增加。在过去的五十年中,人类主要依靠硬件层面的改进来满足这一点。然而,随着微芯片接近其物理极限,改进运行在其上的代码以使计算更强大和可持续也变得至关重要。

对于每天
数字社会对计算和能源的需求正在不断增加。在过去的五十年中,人类主要依靠硬件层面的改进来满足这一点。然而,随着微芯片接近其物理极限,改进运行在其上的代码以使计算更强大和可持续也变得至关重要。

对于每天运行数万亿次的算法而言,这一点尤为重要。因为它们支撑着从在线搜索结果和社交帖子的排名到计算机和手机上数据处理的一切。

如今,Google DeepMind 推出了 AlphaDev,一种利用强化学习来发现改进的计算机科学算法的人工智能系统,其自主构建的算法,将使得一种每天被全球使用几万亿次的 C++算法的运算速度提高 70%,超越了科学家和工程师几十年打磨出的算法。

Google DeepMind 表示,他们已经将该算法纳入常用的 Libc++ 库,这是十多年来对这部分排序算法库的首次修改。这意味着,如今全球数以百万计的开发者和公司可以在从云计算和在线购物到供应链管理等 AI应用中使用它们。

MIT 教授、CSAIL 首席运营官 Armando Solar-Lezama 在评论文章中写道,“也许更值得注意的是,人工智能系统可以在不了解问题本身的情况下改进代码。”

通过游戏找到最佳算法

利用人工智能生成更好的算法,将改变我们编程的方式,影响我们日益数字化的社会的各个方面。

排序算法是世界各地的计算机不断使用的基本功能,因此,由人工智能创造的改进算法可以使数百万程序运行得更快。

据介绍,AlphaDev 基于 AlphaZero(一种强化学习模型,在围棋、国际象棋等游戏中击败了世界冠军),通过 AlphaDev,Google DeepMind 展示了这个模型如何从游戏转移到科学挑战,并从模拟转向现实世界的应用。

为了训练 AlphaDev 来发现新算法,DeepMind 将排序转化为一个单人“汇编游戏”。在每个回合,AlphaDev 都会观察它生成的算法和 CPU 中包含的信息。然后,它通过选择一条指令来为算法添加一步行动。

这个汇编游戏非常困难,因为 AlphaDev 必须有效地搜索大量可能的指令组合,以找到一种比当前最佳算法更快的排序算法。可能的指令组合与宇宙中的粒子数、国际象棋、围棋中可能的动作数非常相似,但一个错误的行为却会导致整个算法无法发挥作用。

在构建算法时,AlphaDev 逐步添加一条指令,并通过将算法的输出与期望结果进行比较来验证其正确性。对于排序算法来说,这意味着无序的数字输入,正确排序的数字输出。Google DeepMind 根据 AlphaDev 正确排序数字的能力以及完成排序的速度和效率来奖励它。AlphaDev 通过发现一个正确且更快的程序来赢得游戏。

最终,AlphaDev 构建了一个新算法,对于 5 个数据的列表,它比最好的算法快 70%,对于超过 25 万个项目的列表,它比最好的算法快 1.7%。

“我们最初以为它犯了一个错误,或者有一个 bug 或其他东西,但是,当我们分析这个程序时,我们意识到 AlphaDev 实际上已经发现了更快的东西,”Mankowitz 说。

Mankowitz 表示,“优化每天被调用数万亿次的基本函数的代码,我们认为这将给人类带来很大益处,并鼓励人们更多地实施这种操作,并且它也有望成为解决摩尔定律放缓问题的途径之一。”

对此,英国伯明翰大学教授 Mark Lee 认为,AlphaDev 很有意思,即使是 1.7% 的速度提升也很有用。但他也认为,即使在其他常见算法上也能发现相同的效果,但要确定该算法是否能够突破摩尔定律的缺陷还是不能确定的,因为对复杂软件而言其效率也难以达到同样的效果。

构建通用人工智能工具的重要一步

目前,Google DeepMind 正在探索 AlphaDev 在 C++ 等高级语言中直接优化算法的能力,这对于开发人员来说将更加有用。

Google DeepMind 在官方博客中写道,“通过优化和推出全球开发人员使用的改进排序和哈希算法,AlphaDev 展示了其具有真实世界影响的泛化和发现新算法的能力。我们将 AlphaDev视为一个进步阶段,其目标是开发通用AI工具,以帮助优化整个计算生态以及解决其他有利于社会的问题。”

从玩游戏到解决复杂的工程问题,人工智能工具正在为数十亿人节省时间和精力。而这仅仅或许只是一个开始。

我们可以设想一个未来,在这个未来中,我们将具有更快、更高效、更可持续的数字基础设施,并且将使用更多的通用人工智能工具来帮助优化驱动我们数字化世界的整个计算生态。

(编辑:汽车网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章