加入收藏 | 设为首页 | 会员中心 | 我要投稿 汽车网 (https://www.0577qiche.com.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 动态 > 正文

研究基础物理学 空间站为何成为关键一步

发布时间:2023-03-15 12:49:31 所属栏目:动态 来源:
导读:随着2022年梦天实验舱成功发射,与天和核心舱对接转位,天宫空间站的“T”字基本构型完成建设。梦想天宫实验舱装备了大量的科学设备,这些设备能够为科学家进行诸多基础物理实验。

我们为什么要在外太空
随着2022年梦天实验舱成功发射,与天和核心舱对接转位,天宫空间站的“T”字基本构型完成建设。梦想天宫实验舱装备了大量的科学设备,这些设备能够为科学家进行诸多基础物理实验。

我们为什么要在外太空做实验?空间站和地面的环境差异对实验有何影响?天宫空间站基本建成,对我国基础物理研究而言,将带来哪些新机遇?近日,北京大学电子学院教授、超冷原子物理实验柜科学实验系统首席科学家陈徐宗通过中国科学院《科学公开课》,讲明了空间站对于基础物理学的重要性。

绝对零度,对应-273.15摄氏度,其热力学温度标记为0K。理论上来讲,若粒子动能低到量子力学的最低点,物质即达到绝对零度,粒子振动消失。为研究生追求微观世界创造了理想的高分辨率观测条件,更好地探索天体物理学基础物理学的无穷无尽的奥秘,人类已经在逼近绝对零度、创造极低温环境的探索道路上摸索了上百年。

1908年,荷兰物理学家昂内斯通过液化氦气,获得了约1K的超低温。戴维·李等科学家通过氦-3达到了mK(10^-3)级别的极低温,并发现了氦-3的超流现象,因此获颁1996年诺贝尔物理学奖。次年同一奖项被颁发给发展了激光冷却法的朱棣文等科学家,他们通过这一技术,将气体原子冷却后达到了μK(10^-6)级别的极低温。此后又有科学家通过蒸发冷却法获得玻色凝聚,达到了nK(10^-9)之小。

陈徐宗介绍,这已经是地面上实验的极限。想要更进一步,达到pK(10^-12)甚至fK(10^-15)级别,必须求助于外太空微重力环境。以蒸发冷却为例,在冷却时,先让简洁陷阱装载原子,动能大的热原子在上,冷原子在下。之后降低势阱势垒高度,使热原子逸散,冷原子留存,达到冷却目的。当受到地球重力影响时,简谐势阱会产生豁口,势垒高度降低过程中冷原子从豁口处逸散,导致冷却失败,原子扩散膨胀。

空间基础物理牵扯到量子物理、量子模拟、引力物理、爱因斯坦等效原理、暗物质和暗能量等方面。要研究它们,需要用到包括冷原子技术、光子技术,以及在冷原子技术上发展起来的原子干涉仪、原子钟。天宫空间站,以及诸多科学卫星,为这些新技术搭建起了理想的平台。这些新技术的出现,不仅改变了人类生活的方式,也为人类探索宇宙提供了新的可能。

巡天望远镜计划将在今年发射升空,与天宫空间站共轨飞行。届时将对暗物质、暗能量进行探测。暗物质指不与电磁力产生作用的物质,因此不会吸收、反射或发出光。据陈徐宗介绍,其存在可以解决大爆炸理论的不自治性。普遍认为,整个宇宙中,“亮”的常规物质仅占4%,暗能量、暗物质加起来占96%,已经有不少天文观测可佐证暗物质的存在。
 

(编辑:汽车网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    推荐文章